

Metabolic Analysis: The Key to Health and Fitness

Holt Davis (Forge Fitness Management)

Discussion

- What is Metabolic Analysis?
- The PNOE Way.
- How and why it works.
- The Solution to your health and fitness.
- When and Where to test.
- How to learn more or set up a consult.

Metabolic Analysis

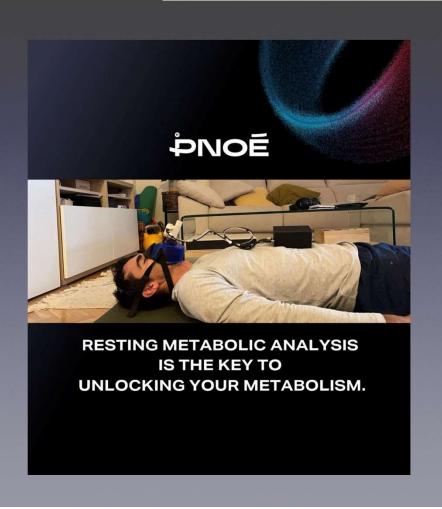
In a nutshell, Metabolic Analysis is the measurement of an individual's caloric burn at rest (RMR), and the measurement of their VO2 Max during exercise (Oxygen Utilization during Exercise).

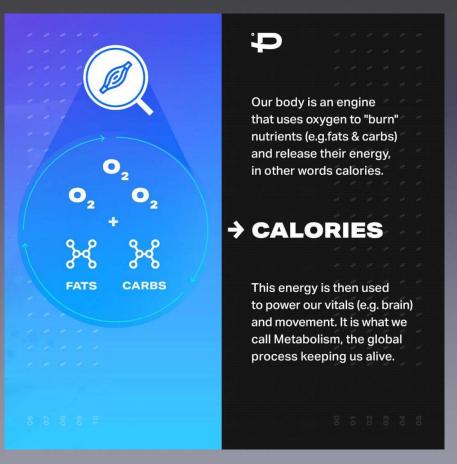
By analyzing a person's metabolism, we can create personalized nutrition plans and exercise programs to help them hit their goals.

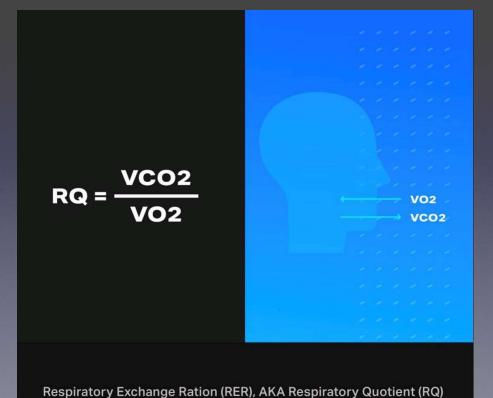
Metabolic Analysis also gives us insight into a person's cardiovascular health.

PNOE Analytics

- PNOE Analytics has made Metabolic Analysis more accessible than ever before. By partnering with PNOE, we now have the ability to test individuals anywhere.
- The PNOE Metabolic Analyzer measures the exchange of gas per breath. This measurement gives us the information needed to gauge a person's overall health in several categories.
- VO2 (Oxygen during the inhale), VCO2 (carbon dioxide during the exhale) and VE (Ventilation or total volume of air exchanged) combine to give us the parameters needed to assess a person's health and fitness.

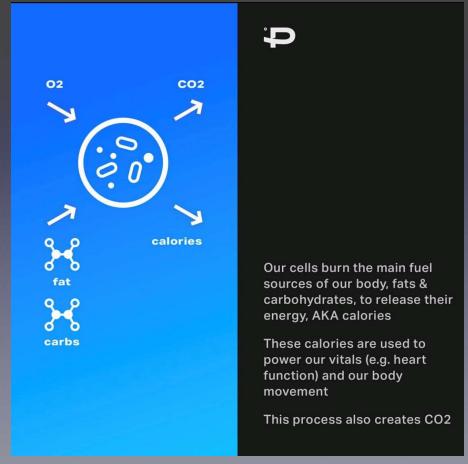





<u>PNOE Analytics utilizes a Resting Metabolic Rate</u> (RMR) and Ergometry (Stress Testing) to evaluate:

Cardiovascular health (i.e.Heart Rate, blood vessels and blood) Energy consumption (i.e. kcal burned over time) Cellular fuel source utilization (i.e. fats and carbohydrates).

A More Detailed Look



is the ratio of produced CO2 (VCO2) over consumed O2 (VO2)

in one breath cycle

Burning Carbs

Burning 1 carbohydrate molecule requires the same amount of O2 as the amount of CO2 it produces

It therefore has an RQ of 1,

since VCO2 = VO2

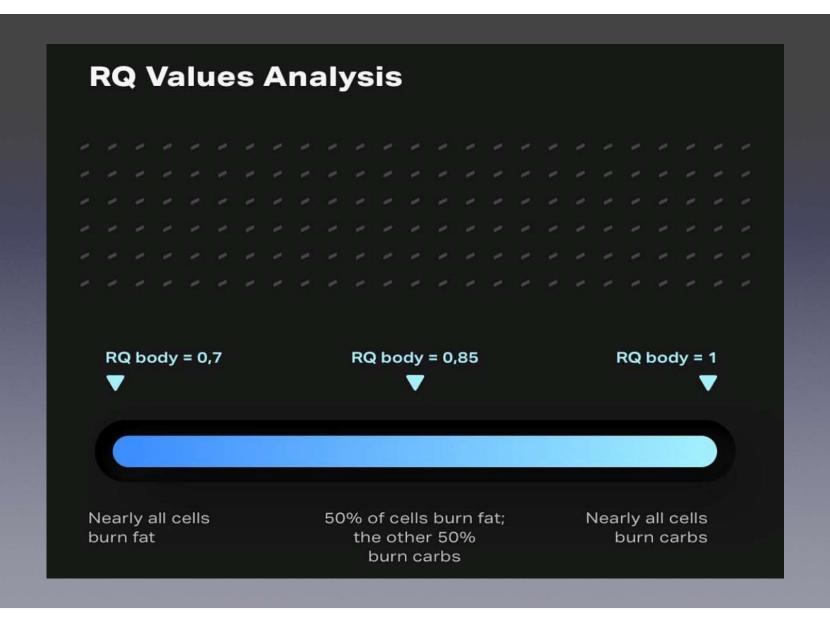
$$RQ = \frac{VCO2}{VO2} = \frac{1}{4}$$

It also releases 4 calories of energy to be used by your body

Burning Fats

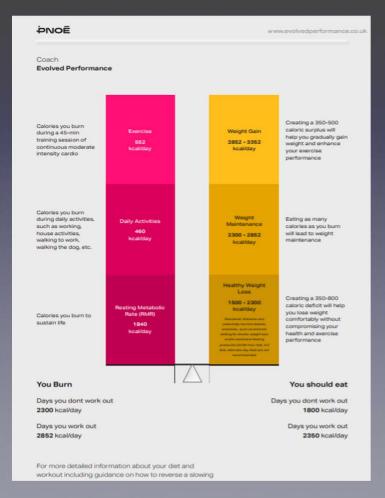
Burning 1 fat molecule requires ~40% MORE O2 compared to CO2 it produces

Therefore,


since 1.4 x VCO2 = VO2

$$RQ = \frac{VCO2}{VO2} = 0.7$$

It also releases 9 calories of energy to be used by your body



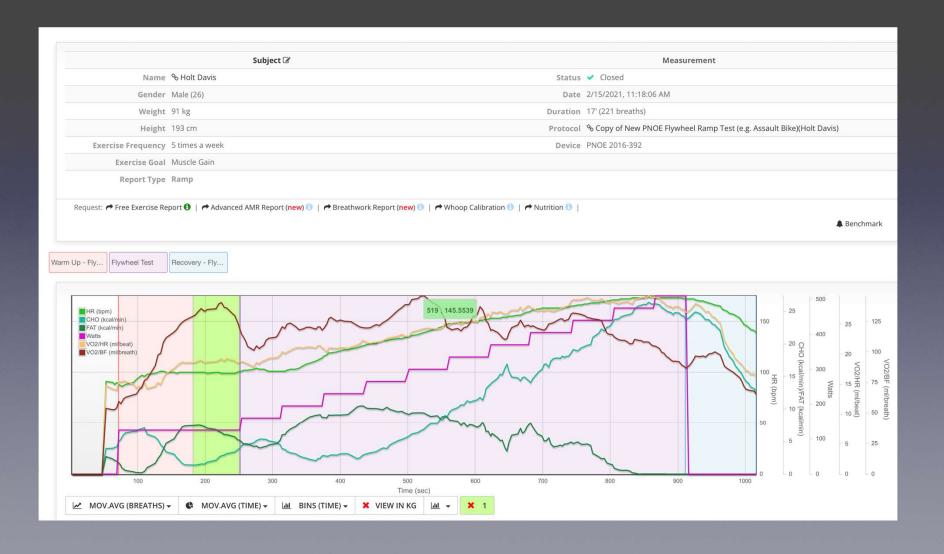
Reports

Overview

Training Zones

Zone	HR Range	Wattage Range	Speed Range	RPE	Benefits	Training Type
Zone 5	181 - 189 BPM			10/10 Feels impossible to continue, completely out of breath, unable to talk	Improves VO2peak, aerobic capacity and muscle metabolism	Short high intensity intervals
Zone 4	173 - 181 BPM	293 - 461 W	-	8-9/10 Difficult to maintain exercise intensity, hard to speak more than a single word	Improves anaerobic capacity through improvements in buffering capacity	Medium high intensity intervals
Zone 3	167 - 173 BPM	262 - 293 W	-	6-7/10 On the verge of becoming uncomfortable, short of breath, can speak a sentence	Improves VO2 and cardiorespiratory health through increases in cardiac strength and improvements in O2 dependent storage and lactate shuttle	Long medium intensity intervals/tempo
Zone 2	148 - 167 BPM	170 - 262 W		4-5/10 Feels like you can exercise for long periods of time, able to talk and hold short conversations	Improves aerobic capacity and muscle metabolism through increased mitochondrial density and capillarization	Low intensity cardio training
Zone 1	138 - 148 BPM	140 - 170 W		2-3/10 Feels like you can maintain this intensity for hours, easy to breath and carry on a conversation	Improves fat burning and increases oxygen delivery to the muscles without significant utilization leading to recovery	Recovery

	Units	04/28/2021	
Fat-Max	at BPM	148	
/entilatory Threshold 1 (VT1)	at BPM	142	
/entilatory Threshold 2 (VT2)	at BPM	179	
VO2 Peak	ml / min / kg	48	


Fat Max

The exercise intensity where a person burns the most amount of fax and the least amount of carbohydrate. (VT1)

The exercise intensity where a person burns the most which phy to be considered.

Ventilatory Threshold 1 Ventilatory Threshold 2 VO2 Peak (VT2)

The maximum oxygen consumption in milliliters per kilogram per minute (ml/kg/min) of body weight achieved during the test. The exercise intensity at which physical activity starts to be considered a workout. In the considered a workout with the body tenerally and the body's energy part of the body's energy

What Gets Measured:

- **VO2**: The amount of oxygen intake per breath
- VCO2: The amount of carbon dioxide exhaled per breath
- FVC (Forced Vital Capacity): The maximum volume of air your can breath in in one second.
- <u>FEV1 (Forced Expiratory Volume)</u>: The maximum volume of air you can breath out in one second.
- VT (Tidal Volume): The volume of air you exhale in every breath cycle.
- **BF (Breathing Frequency)**: The number of breaths you take every minute.
- **VO2 Peak**: The Maximum amount of oxygen your body can absorb.
- And Much More!

What It Tells Us

- Metabolic Rate: The rate at which your body burns calories.
- Fat Burning Efficiency: The body's ability to use fat as a fuel source.
- <u>Cardiovascular Health</u>: The ability for your heart, blood vessels and blood to pump oxygen rich blood throughout your body.
- Aerobic Health: The amount of oxygen your body can absorb.
- Respiratory Capacity: How big your lungs are.
- Respiratory Capability: The amount of your lung capacity you actually use.

The Solution

- Do you have trouble gaining/losing weight?
- Do you diet frequently without long lasting results?
- Have you tried limiting your carb intake or changing your macros and still nothing changes?
- Are you consistently in the gym but not seeing the results?
- Does your fitness feel like it's at a standstill?

Testing is Mobile and Easy to Use

Testing can be conducted anywhere:

- Gym
- Home
- Office
- Clinic
- Outdoors

For More Information on PNOE Analytics or Testing

Email:

- <u>holt@forgevestavia.com</u>
- rich@forgevestavia.com

Phone:

- Holt: 770.658.4509
- Rich: 770.262.5741

Social Media:

• Instagram: @pnoe analytics

